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We elucidate the basic physical mechanisms responsible for the quantum-classical transition in one-
dimensional, bounded chaotic systems subject to unconditioned environmental interactions. We show that such
a transition occurs due to the dual role of noise in regularizing the semiclassical Wigner function and averaging
over fine structures in classical phase space. The results are interpreted in the context of applying recent
advances in the theory of measurement and open systems to the semiclassical quantum regime. We use these
methods to show how a local semiclassical picture is stabilized and can then be approximated by a classical
distribution at later times. The general results are demonstrated explicitly via high-resolution numerical simu-
lations of the quantum master equation for a chaotic Duffing oscillator.
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I. INTRODUCTION

Ever since the birth of quantum physics, the boundary
between quantum and classical descriptions of nature has
been the cause of much controversy and debate. Although
few people now believe in the required existence of a “large”
classical world in which quantum mechanics is somehow
embedded, even for those that accept the primacy of a full
quantum description, the identification of the actual physical
processes that allow a quantum dynamical system to be
approximated—in some limit—by a classical dynamical sys-
tem often remains less than clear-cut.

Initially, quantum-classical correspondence was phrased
in the context of understanding how the fundamental “sub-
atomic” laws of quantum physics could possibly be compat-
ible with a “macroscopic” world which, to a very good de-
gree of approximation, evolves according to classical
Hamiltonian dynamics and lacks �classically� bizarre quan-
tum characteristics such as interference and entanglement
�1�. This view was famously, if somewhat vaguely, canon-
ized in Bohr’s Correspondence Principle. The phrase is typi-
cally invoked to mean one of three related, but not identical,
subjects: The existence of a formal analogy between certain
preferred classical dynamical variables and quantum observ-
ables; the limit of large quantum numbers, large action or
small �, possibly in some combination; or the extent to
which classical and quantum dynamical evolutions agree, in
the spirit of Ehrenfest’s theorem and semiclassical dynamics.

The last two interpretations, which are the principal foci
of this paper, often overlap with one another but are not
identical. As an example, the position and momentum expec-
tation values of a quantum harmonic oscillator evolve ex-
actly according to the classical Liouville equation, and, given
an initial distribution acceptable both classically and
quantum-mechanically, the two theories give identical re-
sults. However, when comparing a quantum energy eigen-
state of the oscillator to a classical orbit at the same energy,
ad hoc reasoning must be utilized to eliminate rapid quantum
oscillations about the classical values, an example of the sin-

gular nature of the �→0 limit. That said, interference elimi-
nation and dynamical agreement are often related insofar as
decreasing the size of � will usually have the effect of alter-
ing the scale of quantum interference while simultaneously
improving the time scale of agreement of classical and quan-
tum expectation values when they are not already identical
�e.g., the trivial linear case above�.

It has long been recognized that the problems with attain-
ing the classical limit are compounded for nonlinear systems
�2�. Theoretical analysis and experimental observation of
chaotic systems over the past forty years has made it clear
that classical chaos is a real-world phenomenon that quan-
tum theory should reproduce to within experimental accu-
racy. Under a unitary quantum evolution, however, any non-
linear dynamical system will eventually fail the conditions of
Ehrenfest’s theorem. Quantum expectation values cannot fol-
low classical predictions at long times as quantum mechanics
does not respect the symplectic dynamical symmetry of clas-
sical mechanics �3,4�. The dynamics of closed bounded
quantum systems are also quasiperiodic; such a system can
never be chaotic for any nonzero value of �.

A chaotic classical phase space evolution generates struc-
tures at infinitesimally small scales, whereas, due to interfer-
ence effects, the corresponding quantum evolution does not
possess a notion of local phase space structures. The net
effect is a short-time disagreement between semiclassical
and classical evolutions, followed by a failure of the semi-
classical approximation itself at longer, but still finite time
scales �5,6�. This prompted some early investigators in the
field to wonder if quantum mechanics had to be modified in
order to produce chaos �7�. As a consequence of these ob-
structions, chaotic systems have emerged as a testing ground
for whether or not quantum-classical correspondence is truly
a valid concept, and, if so, how it should be properly phrased
and addressed.

A parallel set of experimental developments, particularly
in the last twenty years, have also strongly suggested the
need for a more refined view of the quantum-classical tran-
sition �QCT�. The border between the macroworld of classi-
cal mechanics and the microworld of quantum physics has
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been blurred by technological, observational, and theoretical
progress. Precision measurements in nanomechanics, atomic
and molecular optics, and quantum information processing
and communication have probed mesoscopic regimes, neces-
sitating a careful analysis of the relative merits of using a
classical or quantum description since the systems studied
are neither “very large” nor “very small.” In a quite different
realm, recent observations of the cosmic microwave back-
ground and the large-scale distribution of galaxies have
strongly supported the notion that primordial quantum fluc-
tuations seed the formation of large scale structures in the
Universe �8�, demonstrating that crude criteria of “micro-
scopic” vs “macroscopic” are no longer sufficient as an un-
derlying basis for a serious study of the QCT. Understanding
the physical mechanisms which define when a system be-
haves classically is now a practical issue.

A consensus is forming that spanning the gap between the
above problems and the correspondence principle requires a
robust understanding of open quantum systems and quantum
measurement �9�. Any experimentally relevant system is, by
definition, a measured system which interacts with its envi-
ronment, if only through a meter. A quantum measurement
differs from a classical one in at least two regards: �i� The
intrinsic barrier imposed by the uncertainty principle on the
precision of phase space information a meter can extract and
�ii� the more severe manner in which the subsystem becomes
entangled with its environment. Due to this entanglement,
quantum measurement is generically associated with an irre-
ducible disturbance on the observed system �quantum “back
action”�. The desired measurement process must yield a lim-
ited amount of information in a finite time in order to yield
dynamical information without strongly influencing the dy-
namics. Hence, simple projective �von Neumann� measure-
ments are clearly not appropriate because they yield com-
plete information instantaneously via state projection. But
this fundamental notion of measurement can be easily ex-
tended to devise schemes that extract information continu-
ously �10�.

The basic idea is to have the system of interest interact
weakly with another �e.g., atom interacting with an electro-
magnetic field� and make projective measurements on the
auxiliary system �e.g., photon counting�. Because the inter-
action is small, the state of the auxiliary system gathers little
information regarding the system of interest, and this system,
in turn, is only perturbed slightly by the measurement back
action. Only a small component of the information gathered
by the projective measurement of the auxiliary system relates
to the system of interest, and a continuous limit of the mea-
surement process can be taken. One then studies the master
equation for the evolution of the subsystem density matrix
conditioned on its measurement record. The master equation
can be further “unraveled” into nonlinear stochastic trajecto-
ries for a pure state, the so-called quantum trajectories �11�.
An average over the pure states gives back the original den-
sity matrix. Unlike in the classical case, where the analogous
situation refers to a weighted ensemble of phase-space points
uniquely determined by the probability distribution, a mixed-
state density matrix does not have a unique decomposition in
terms of state vectors.

It is essential to distinguish between closed evolution,
where the system state evolves without any coupling to the

external world, unconditioned open evolution, where the sys-
tem evolves coupled to an external environment but where
no information regarding the system is extracted from the
environment, and conditioned open evolution where such in-
formation is extracted. What we call the strong form of the
QCT describes how a local trajectory level picture arises
from a conditioned evolution. However, in many situations,
only a statistical description is possible even classically, and
here we will demand only the agreement of quantum and
classical distributions and the associated dynamical averages.
This defines the unconditioned weak form of the QCT which
is the focus of the present paper �for a review, see Ref. �12��.

While the specific nature of the subsystem-environment
interaction depends on the subsystem studied, the actual pro-
cess of information extraction, and unavoidable coupling to
other environmental channels, there do exist simple, yet
physically significant, general cases. The systems studied in
this paper can be interpreted as undergoing a continuous po-
sition measurement �13�, where either the results of measure-
ment are not recorded, or all of the measurements in an en-
semble are averaged over to erase the information regarding
specific measurements. Nevertheless, the entanglement be-
tween the position measuring readout and the subsystem still
produces a quantum back action in momentum. The form of
this open system interaction, which falls into the class of
Lindblad superoperators, rigidly separates the subsystem and
its environment �14�.

Although a classically chaotic system cannot approximate
a closed quantum system via the traditional �→0 route,
there is good numerical evidence—at least for some
systems—for the weak form of the QCT. Numerical studies
of the Duffing oscillator and other systems have shown that
expectation values of a quantum system subject to an uncon-
ditioned continuous position measurement will come into
agreement with the expectation values of an �equivalent�
open classical system, and that the quantum phase space will
come to capture certain classical phase space features �15�.
In the case of the strong form of the QCT, studies have
demonstrated the existence of nonzero Lyapunov exponents
for conditioned systems, as well as inequalities which clearly
delineate when the classical trajectory interpretation is valid
in the conditioned case �16,17�.

An important distinction between the weak and strong
forms of the QCT must be made. In the conditioned case, the
master equation actively localizes the wave function about
its expectation value, allowing trajectory level agreement be-
tween measured classical and quantum systems. However, in
the unconditioned case, the inequalities governing the strong
classical limit need not be satisfied and localization need not
occur. The problem of understanding how classical and
quantum systems begin to look like one another in a generic
open system, even without the advantage of conditioning,
has remained open.

As a final point, we note that while the strong form of the
QCT must hold for all dynamical systems with a classical
counterpart, it is not that the weak QCT must also do so. The
quantum delta-kicked rotor provides a particular example of
the failure of the weak QCT �18�. The general problem of
knowing in advance what governs this behavior is not yet
resolved, although the work in this paper suggests that �ef-
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fective� compactness of the accessible phase space plays an
important role. Moreover, the violation of the conditions nec-
essary to establish the strong form of the QCT need not
prevent the existence of a weak QCT. Since the strong form
of the QCT requires treating the localized limit, a cumulant
expansion for the distribution function immediately suggests
itself �16�, whereas, for the more nonlocal issues relevant to
the weak form of the QCT, a semiclassical analysis turns out
to be natural, as will be demonstrated here.

In this paper we investigate the physical mechanisms re-
sponsible for the weak quantum-classical transition in a one-
dimensional, open system with a bounded classically chaotic
Hamiltonian, expanding on the themes of a shorter paper
�19�. These arguments are topological in nature and should
be generic for compact, one-dimensional hyperbolic regions,
as well as for unbounded systems which stretch and fold in a
manner analogous to bounded chaotic systems, unlike other
studies which focus on calculations for a particular system of
interest �20�. We show how the classical limit is recovered
via two parallel processes. First, environmental noise modi-
fies chaotic classical phase space topology by terminating the
production of small scale �late-time� structures. �This behav-
ior has some parallels with recent numerical studies of a
chaotic advection-diffusion problem with a periodic velocity
field, as will be discussed later �21�.� Second, in the quantum
picture, environmental noise acts as a regulator, attenuating
nonlocal contributions to the semiclassical wave function,
and, thereby, stabilizing a local semiclassical approximation
from the pathologies which a classically chaotic system typi-
cally generates, so that it can now be associated with a noise-
modified �smoothed� classical phase space geometry. As a
consequence of these processes, the local semiclassical ap-
proximation becomes stable at long times, allowing classical
and quantum open systems to be brought into dynamical
agreement at the level of distribution functions, rather than
the trajectory level agreement one obtains from conditioning
due to measurements.

The above arguments are very general and apply to a wide
class of open systems. The key philosophy of our approach is
that, for a classically chaotic system, correspondence is in-
separable from some notion of measurement or environmen-
tal coupling. We investigate the associated open-system
quantum-classical agreement by employing the Wigner rep-
resentation of the quantum density matrix and comparing it
to the classical phase space distribution function, an ap-
proach with certain mathematical and formal advantages
�22�. We then utilize this analysis to elucidate the mechanism
by which the agreement occurs, as well as derive a time scale
after which the agreement becomes stable.

Using numerical simulations, we demonstrate the exis-
tence of the weak QCT for the Duffing oscillator and place it
in the context of other numerical studies. Many of the de-
tailed features of the weak QCT for the Duffing oscillator
can be explained and predicted by our theoretical framework.
We will begin, however, by briefly reviewing the semiclassi-
cal and classical limits of closed nonlinear systems in the
Wigner representation, emphasizing why they disagree with
their associated classical distribution functions at short times
and fail as t→�. For additional background on this topic,
see Ref. �23�.

II. NONLINEAR CLASSICAL LIMIT IN PHASE SPACE

The Wigner function, fW�q , p , t�, is a representation of the
quantum density matrix operator, �̂, in a c-number phase
space �24�. Along with the analogous classical phase space
distribution function, fC�q , p , t�, we use it to compare the
dynamics of open quantum and classical systems. Using the
Wigner function as a tool for studying the quantum-classical
transition is conceptually and practically advantageous. It al-
lows one to compare classical and quantum dynamics in
phase space �though there are pitfalls one must be aware of�,
rather than trying to compare, say, wave functions in L2 to
classical trajectories. More importantly for our purposes, the
theory of semiclassical approximations can be directly tied to
the evolution of classical curves in phase space, making it
easier to visualize the extent to which quantum and classical
dynamical evolutions agree �22�. For a classically chaotic
system, distribution functions can also give a clearer sense of
global phase space topology, allowing one to examine the
extent to which dynamical agreement over an entire compact
hyperbolic region of interest is achieved.

The Wigner representation of an operator, Â, is defined as

AW�q,p,t� = �
−�

�

dX e−ipX/��q +
X

2
�Â�q −

X

2
� . �1�

The Wigner function is the Wigner representation of the gen-
eral mixed state density operator �̂=	ici ��i
��i� yielding

fW�q,p,t� =
1

2��
�

−�

�

dX exp�− ipX

�


� 	
i

ci�i�q +
X

2
,t�i

*�q −
X

2
,t . �2�

It follows that, for any operator,

�Â
 = Tr�Â�̂� = �
−�

�

dq�
−�

�

dp AW�q,p,t�fW�q,p,t� . �3�

Any classical quantity, qnpm, can be associated with a quan-
tum operator, via the Weyl ordering

1

2n	
r=0

�

q̂n−rp̂r. �4�

Thus one can compute averages of any classical quantity in
the Wigner picture.

Unlike a classical phase space distribution function, the
Wigner function is only a quasiprobability distribution, as it
can take on negative values. This condition also implies that
the Wigner function cannot generally be used as a condi-
tional probability distribution and is bounded by ±����−1,
which prevents it from being a delta function in phase space
at finite �, and, therefore, prevents it from representing a
classical trajectory �25�. The classical phase space distribu-
tion is a true positive definite probability distribution capable
of determining averages over arbitrarily small phase space
regions, whereas the degree to which a Wigner function can
capture a local average depends on whether the region being
integrated over is receiving strong quantum interference ef-
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fects from locations outside of the integrated region.
The equation of motion for the Wigner function is given

by the Wigner representation of the equation of motion for
the density operator:

� fW

�t
= L̂CfW + L̂QfW, �5�

where the classical Liouville operator

L̂C � − p�x +
�V

�x
�p �6�

and the quantum correction

L̂Q � 	
n�1

�2n�− 1�n

�22n�2n + 1� ! �
�x

2n+1V�p
2n+1. �7�

The form of this evolution equation suggests an intuitive, but
misleading, interpretation of how the classical limit is
achieved �26�. In the equation of motion, � only appears in

the L̂q term. So it is tempting to suggest that, as �→0, the
“quantum contributions” to the evolution of the Wigner func-
tion likewise decrease. However, all of the momentum de-

rivative terms in both L̂Q and L̂C are proportional to
�2n�p

2n+1fW. Since, by definition,

fW � exp� ipX

�
 , �8�

after one takes the appropriate momentum derivatives, it is
clear that, like the wave function, fW is O��−1� to leading
order in �. One can never expect quantum corrections to
smoothly disappear as � is decreased due to this essential
singularity, which produces increasingly rapid oscillations as
�→0, and will keep the Wigner function from tending to a
positive distribution. To eliminate the rapid oscillations, one
often introduces an ad hoc filter, as in the case for the
Husimi-type Gaussian filters �27,28�. This can forcibly pro-
duce positive-definite distributions but lacks an underlying
dynamical justification.

The formal study of the classical limit in phase space
begins by constructing a semiclassical Wigner function from
an underlying semiclassical wave function. The semiclassical
wave function is the singular O��−1� and constant part of a
general wave function in the �→0 limit �29�. In this sense,
any small � view of the classical limit must focus on the
semiclassical regime since the semiclassical wave function is
the irreducible part of the wave function in this limit. The
standard presentation tends to view this process as simply
representing the two lowest order terms in a perturbation
series for the phase of the wave function. However, the
higher order terms in this series, in addition to being notori-
ously difficult to calculate, are rarely useful. The remaining
terms can be thought of as a vanishing, O��� error, and not as
a series of higher order terms waiting to be explicitly calcu-
lated �30�.

Most importantly, a semiclassical wave function is di-
rectly associated with the evolution of classical phase space
curves. The formal procedure constructs an initial wave
function from an N-dimensional Lagrangian manifold em-

bedded in a 2N-dimensional phase space �30�. In this paper,
phase space is two-dimensional and so the associated La-
grangian manifold studied is a curve, which will be one of a
family of phase space curves parametrized by the continuous
parameter �, as elucidated in Ref. �22�. An initial semiclas-
sical wave function associated with the curve � will have the
form

��q,0;�� = A0�q;��exp� i

�
S0�q;��� , �9�

where A0�q ;�� and S0�q ;�� are real-valued functions. For
simplicity of presentation, we will assume that this initial
curve has a single momentum value associated with each
position. Relaxing this assumption would result in a slightly
more awkward presentation, but would not alter its sub-
stance. The above form naturally induces a Lagrangian curve
in phase space if the associated momentum has a well-
defined classical limit. Namely,

lim
�→0

i�
�

�q
��q,0,�� = A0�q,��

�S0�q,��
�q

� p�q,�� . �10�

The evolving classical curve will typically develop turn-
ing points, which can result in multiple momentum values
for a given position. This will certainly be the case for the
highly nonlinear systems addressed here. As a consequence
of this folding, one assigns a new action to each branch of
the curve as it evolves, as described in Ref. �22�. The action
at time t for the jth path is then given as

Sj�q,t;�� = S0�q0j;�� + �
q0j

q

dq�pj�q�,t;��

− �
0

t

dt�H�q0j,p0j�q0j,t�;��,t�� , �11�

which yields the semiclassical wave function:

��q,t;�� = 	
j=1

N

Aj�q,t�exp� i

�
Sj�q,t;�� −

i�

2
	 j + O��� ,

�12�

where 	 j is the jth Morse index, defined as the number of
times the determinant is equal to zero along the path con-
necting �q0j , p0j� to �q , pj�.

By substituting the semiclassical wave function into the
definition of the Wigner function, one can construct a geo-
metric interpretation of the accuracy of a semiclassical analy-
sis. For the purpose of clarity, we will assume we are dealing
with a pure state density matrix, the extension to mixed
states being straightforward. The semiclassical Wigner func-
tion becomes
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fW�q,p,t;�� =
1

2��
�

−�

�

dX	
ij

Aij�q,t;��

� exp� i

�
�Si�q + X/2,t;�� − Sj�q − X/2,t;��

− pX� −
i�

2
�	i − 	 j�� , �13�

where Aij �Ai�q+X /2 , t ;��Aj�q−X /2 , t ;��. To get a sense
of the primary contributions to this integral as � is brought to
zero and the integrand rapidly oscillates, we examine the
stationary phase condition:

d

dX
�Si�q + X/2,t� − Sj�q − X/2,t� − pX� = 0, �14�

where, for clarity, the � parameter is suppressed for the re-
mainder of the paper. In the stationary phase approximation,
the Wigner function is separated into a singular stationary
part and an additional O��1/2� oscillatory part �31�. There-
fore, the stationary phases are the most relevant contributions
in the �→0 limit, as rapid oscillations become less signifi-
cant. After substituting the expression for the evolved action,
the stationary phase condition becomes

1

2
�pi�q + X/2,t� + pj�q − X/2,t�� = p�q,t� . �15�

If i= j, this is the famous Berry midpoint rule: 1
2 �pi�q

+X /2�+ pj�q−X /2��= p�q , t� �22�. That is, the stationary
phase contributions at a point �q , p� come from the average
of the momenta on a given solution curve evaluated at the
end of an interval of width X about q.

If the point �q , p� is particularly close to a curve, pi�q�, as
will often be the case when the underlying curve evolves in
a chaotic region of phase space, then the stationary phase
points will coalesce, invalidating the stationary phase
method. Likewise, the WKB wave function itself is not valid
near turning points, as the Jacobian vanishes. However, these
cases are remedied by the uniform approximation, which
yields a symmetric Airy function, rather than sinusoidal, be-
havior �32�. Therefore, if �q , p� is too close to a given
branch, the expression for the semiclassical contribution for
that branch should be replaced by the uniformized form. The
only remaining problem which can invalidate the expression
is the appearance of catastrophes when �q , p� is a focal point
of a curve, which can be dealt with analytically, as was also
studied by Berry, but is outside the realm of this paper. Close
to the classical curve pi�q�, the uniformized WKB approxi-
mation for the Wigner function has an Airy “head” of width
��2/3 and peak height ��−2/3. In this limiting case, the uni-
form approximation can be further simplified and written in
the form of a “transitional approximation” which is valid
only very near pi�q�. Remarkably, the �→0 limit of the tran-
sitional approximation is indeed a classical delta function,
which allows the Wigner function picture to give a physi-
cally clearer presentation of the classical limit.

The semiclassical quantum Wigner function goes through
three phases in its evolution, if the underlying classical dy-
namics is chaotic, as laid out by Heller and Tomsovic �6�.
During the �very short� first phase, if the initial condition
used is that of a classical distribution, there will be little
disagreement between the quantum and classical evolutions.
This is followed by a second phase, where the semiclassical
approximation reproduces the wave function dynamics, but
is distinctly nonclassical. At a longer time scale, proportional
to inverse powers of �, the semiclassical approximation fails,
as the distance between classical manifolds becomes so close
that the cumulative interference cannot be locally ascribed to
any given curve. So, in the first, classical regime, there is
little interference. In the second, semiclassical regime there
is some, possibly strong, quantum interference, but it is in
the form of local fringing about classical curves. In the final,
fully quantum phase, there is strong global interference, and
local classical manifold evolution is of little relevance to the
quantum propagation.

There are two sources of quantum interference in phase
space: Local Airy “shadows” of the short wave classical
curve and nonlocal contributions from multiple curves, the
latter being more problematic if we wish a weak QCT to
hold. In order to maintain a stable classical limit for a clas-
sically chaotic system, it must be possible to keep a system
in a more or less classical regime �analogous to, but not the
same as the first regime discussed above�, allowing only a
small admixture of local interference effects. We show below
how such a stable classical limit arises in open systems, via
the same physical process that simultaneously leads to a
smoothing of the classical phase space geometry.

III. OPEN SYSTEMS AND MEASUREMENT

To model the interaction between a subsystem and its
measuring device we choose the form of an unconditioned
continuous position measurement. This provides the mini-
mum level of interaction necessary to bring quantum and
classically chaotic dynamical systems into �approximate�
agreement with one another at the level of distribution func-
tions. The model of a conditioned continuous position mea-
surement �i.e., evolution of the system density matrix taking
the results of measurement into account� is given by the fol-
lowing master equation �33�:

d� = −
i

�
�H,�� + k†X�X,��‡dt −

�k̄

2
��X,��+ − 2��X
�dW ,

�16�

where the observed measurement record is given by

dy = �X
dt +
1

k̄
dW . �17�

In the above equation �X
=Tr��X�, dW is the Wiener mea-
sure ��dW�2=dt�, k represents the strength of the interaction

between the subsystem and the measuring apparatus, and k̄
measures the rate at which information about the system is
being extracted. The fractional measure of extracted informa-
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tion is given by the efficiency of the measurement 
� k̄ /8k.
The first term in Eq. �16� is just the unitary evolution for the
closed system, the second is a diffusive term arising from
quantum back action, and the third represents the condition-
ing due to the measurement.

The conditioned evolution can localize the state about the
measured position value; the extent of this localization �pro-

portional to k̄� must however be tempered by the associated
increase of back action noise �concomitant increase in k�.
Nevertheless, inequalities can be derived that show under
what conditions both of these conflicting effects can be rec-
onciled and agreement between classical and quantum dy-
namics achieved at the level of trajectories �16,17�—the
strong form of the QCT.

If one averages over all obtained measurement records,
one obtains the master equation for an unconditioned evolu-
tion:

d� = −
i

�
�H,�� + k†X�X,��‡dt . �18�

This evolution can also be achieved by setting the efficiency

of the measurement, and, therefore, k̄=0. Once one does so,
the localization inequalities which characterize the strong
form of the QCT fail, showing the inability of the weak QCT
to capture trajectory level chaos and the need for the distri-
bution function approach employed here. The evolution
equation is the same as that for the Caldeira-Leggett model
in the weak coupling, high temperature approximation �34�.
The key point here is that while the conditioning term is
absent, the back action term remains. This is very different
from the classical case, where averaging over measurements
simply gives back the closed-system Liouville equation, thus
highlighting the contrast between the active nature of quan-
tum measurements versus the passive nature of classical
measurements.

The master equation �18� is the starting point in our analy-
sis of the weak QCT utilizing the Wigner function. In the
Wigner representation, this equation becomes

� fW

�t
= L̂CfW + L̂QfW + D

�2fW

�p2 , �19�

where the diffusion coefficient D=�2k. If we set L̂Q=0, we
obtain a dual classical evolution equation, for the classical
distribution function fC�q , p , t�:

� fC

�t
= L̂CfC + D

�2fC

�p2 , �20�

which, given its form, we will call the dual Fokker-Planck
equation. Note that this Fokker-Planck equation does not
represent the dynamics of an associated classical observed
system. Here it has two key roles: It represents the classical
template for a semiclassical open-system analysis and also
the proper �approximate� classical limiting form if the weak
QCT were to hold. This particular Fokker-Planck equation is
better viewed as simply a classical dual of the quantum mas-
ter equation �19�, without an independent physical existence.

A final note on time scale separations is necessary to
clarify the physical situations under which Eqs. �18� and �19�
are considered to hold. We are not interested in imposing
initial conditions on the quantum dynamics that have classi-
cal analogs �e.g., Gaussian wave packets�, and then looking
for the emergence of short-time quantum effects. In fact, we
acknowledge the existence of quantum initial conditions ex-
plicitly �as in the numerical simulations of Sec. VI�, and
investigate quantum-classical convergence in the sense of the
convergence of distribution functions as obtained from the
quantum master equation and its classical dual.

At the same time, we are particularly interested in the
dynamics set by the closed-system Hamiltonian, with mini-
mal influence from the external environment or continuous
measuring process, i.e., the weak coupling limit. In this limit,
we can ignore the dissipative effects of external couplings
�damping due to environment modes and/or measurement
back action�, but consider only diffusive effects, which re-
main finite in the weak coupling limit �as in the weak-
coupling, high-temperature Caldeira-Leggett model�. There
are two time scales associated with these statements. The
first, trelax, is the time taken for the system to relax to a
thermal state, �or nonequilibrium steady state depending on
the circumstances� and is typically controlled by the match-
ing of energy exchange as set by the dissipation and diffusive
channels. The second, tdiff, is the diffusive heating time scale
which, in the absence of dissipation, leads to continuous
heating of the system. Since at late times, when dissipative
effects would be expected to occur, this heating is unphysi-
cal, it is clear that our analysis assumes t� tdiff. Therefore,
we are interested in the dynamics of open quantum systems
on intermediate time scales, longer than the system dynami-
cal time scales, yet far from the �asymptotic� time scales
relevant for close to steady-state behavior. All remarks below
on “long-time” behavior apply to this intermediate time scale
and not to some eventual steady state.

IV. MODIFICATION OF PHASE SPACE GEOMETRY FOR
A CHAOTIC SUBSYSTEM

The first step in our analysis is the study of the dual
Fokker-Planck equation. As mentioned earlier, following a
semiclassical line of reasoning, the motivation for this is that
the measurement environmental interaction modifies the ge-
ometry of a chaotic classical phase space in a manner which
can allow dynamical agreement between classical and quan-
tum systems. The key point is that, due to the diffusion term,
one necessarily sees a termination in the level at which one
can discern the long-time development of fine structure. The
�exponential� long-time development of structure is a hall-
mark of classically chaotic systems in a compact space, and,
as discussed in the previous section, leads to disagreement
between classical and semiclassical results, followed by a
complete failure of semiclassical analysis. But, as these
structures are averaged over, the resulting smoother phase
space geometry can be consistent with the existence of a
local semiclassical description.

We will show below that the diffusion term in the Fokker-
Planck equation terminates the development of small scale
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structures at a finite time, denoted by t*. At this time, there
will be an associated area, lcl�t*�2, below which no smaller
phase space structures can be discerned. To understand the
termination of structure, we consider the Langevin equations
underlying the dual Fokker-Planck equation. These are given
by

dq = p dt/m �21�

and

dp = f�q�dt + �2DdW , �22�

where f�q�=−�V�q� /�q, dW is the Wiener measure ��dW�2

=dt�, and D is the noise strength. Since D is constant, one
can consistently write dW=��t�dt, where ��t� is a rapidly
fluctuating force satisfying ���t�
=0 and ���t���t��
=��t− t��
over noise averages.

A hyperbolic region of the phase space of a bounded cha-
otic Hamiltonian system is foliated by its unstable manifold,
which emerges from the stretching and folding behavior in-
duced when nonperiodic solution curves are confined to a
bounded region. A trajectory in the neighborhood of a hyper-
bolic fixed point will create large scale structures, due to its
exponential growth away from the hyperbolic point. As it
evolves, since it can only explore the energetically allowed
region, it will fold onto itself and create smaller scale struc-
tures. For a bounded chaotic region, the curve will eventually
fill the allowed space. The important consequence for this
analysis is that this filling is done preferentially. Large scale
structures are initially generated by rapid stretching and are
associated with short time scales. The smaller scale fine
structures are then filled in afterwards as the system contin-
ues to fold on itself and are, therefore, a late-time feature.

In order to investigate how environmental noise modifies
this picture, we perform a perturbative expansion of the so-
lution curve in the small noise limit in the neighborhood of a
hyperbolic fixed point �qeq ,0�, where f�qeq�=0, where �2D
is treated as the small noise parameter �35,36�. As empha-
sized in the previous section, this assumption is physically
justified by the argument that the affected noise scale in
phase space should be smaller than that of the system dy-
namics. As discussed in the Introduction, the system is taken
to be weakly interacting with its environment to ensure that
the system dynamics are affected only perturbatively. To
leading order in �2D, we can therefore separate the dominant
systematic components from the noisy components via q�t�
�qC�t�+qN�t� and p�t�� pC�t�+ pN�t�, leading to the usual
Hamilton’s equations for qC and pC, and to the coupled equa-
tions dqN= pNdt /m and dpN=m2qNdt+dW, where m2

=�f�qeq� /�q defines the local Lyapunov exponent, . These
have the solution

q�t� = qeq + C+et + C−e−t

+
�2D

2m
�

0

t

du ��u��e�t−u� − e−�t−u�� , �23�

with an analogous expression for p�t�.

To understand the effect of noise on the foliation of the
unstable manifold, one needs to transform from the position
and momentum basis into the stable and unstable directions.
The dimensional scalings q�=�mq and p�= p /�m are in-
troduced so that the rescaled position and momentum have
the same dimensions and also so that the stable and unstable
directions are orthogonal. An arbitrary time rescaling, which
would give the correct units, would not guarantee orthogo-
nality. If we project the solutions for q�=�mq and p�
= p /�m along the stable �−� and unstable �+� directions, we
find the following expression for the components of the
noisy trajectories evolution in these two directions:

u±�t� =
1
�2

�q� ± p�� �24�

=�2mC±e±t ±� D

m
�

0

t

du ��u�e±�t−u�. �25�

One can now analyze the effects of these noisy trajecto-
ries on the evolution of the distribution function which they
unravel. The average over all noisy realizations of the dis-
placement in the stable and unstable directions is given by
�u±
=�2mC±e±t, as expected from a perturbation in the
neighborhood of a hyperbolic fixed point. More information
is found in the second order cumulants. Whereas the stable
and unstable directions have variances of ±�D / �2m2��
��e±2t−1�, the off-diagonal cumulant is �u+u−
− �u+
�u−

=−Dt / �m�, displaying the linear spreading associated with
a Wiener process. In forward time, where the evolution of a
trajectory is determined by the unfolding of the unstable
manifold, this spreading indicates that, as the trajectory
evolves, it will simultaneously smooth over a transverse
width in phase space of size

lcl�t� � �Dt/�m� . �26�

One is left with a picture of a curve following a classical path
in the unstable direction while carrying small amounts of
transverse noise. In a bounded, compact phase space region,
this implies a termination in one’s ability to measure the
position and momentum of the trajectory on a scale smaller
than the aforementioned width. In other words, the fine struc-
tures associated with a chaotic region will be smoothed over
in the averaging process, causing the development of large
scale structures which occur prior to this termination time to
become pronounced.

Given a set of parameters associated with this compact
phase space region, one can estimate the value and scaling
associated with the termination time, t*. Consider an initially
small compact region of phase space area u0

2, then its current

phase space “length” is approximately u0ēt, where ̄ is the
time-averaged positive Lyapunov exponent. If the trajectory
is bounded within a phase space area A, the typical distance
between neighboring folds of the trajectory is estimated by

��t� � A/�u0ēt� . �27�

This formula only applies once the curve has begun to fold
on itself; given a particular choice of u0, one must be careful
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that enough time for folding to occur has passed before using
the above equation. One can, in this spirit, estimate a “fold-
ing time” and compare it with the eventual computed value
of t* to again insure that this analysis is self-consistent. In
any case, one cannot make u0

2 arbitrarily small when explor-
ing the QCT because the uncertainty principle sets a lower
bound on phase space area. Note that the length of a long
time scale—long compared to the dynamical time scale—is
also implied by the appearance of the time-averaged

Lyapunov exponent, ̄.
Phase space structures can only be known to within the

width specified by the noisy dynamics, hence there will
come a time at which the rapidly falling scale ��t� set by the
folding will be smaller than the slowly increasing filter scale,
lcl�t�, at which lengths are averaged over as given by Eq.
�26�. The time at which any new structures will be smoothed
over is given by equating Eqs. �26� and �27�, to yield

� Dt*

�m̄�
=

A

u0
exp�− ̄t*� , �28�

a simple transcendental equation for t*. Typically, t* is ex-

pected to be significantly larger than 1/ ̄, as there will usu-
ally be many foldings before the filtering becomes effective.
In this case a simple iterative procedure can be used to find
the approximate solution,

t* �
x0

2̄
�1 −

ln�x0�
1 + x0

� , �29�

where x0=ln�2m̄2A2 / �Du0
2��.

After the time t* no new structures will be discerned,
since they will be smaller than the averaging scale set by the
noisy dynamics. This implies the existence of a phase space
area lcl�t*�2 below which phase space structures are smoothed
over. As a result, the dual Fokker-Planck equation for a cha-
otic system is such that we can only discern large scale struc-
tures �small and large being relative to the cutoff lcl�t� pro-
duced prior to t*�. When constructing a classical limit for the
open quantum evolution �19�, we now only have to capture
the larger, short-time dynamical features and not the full cha-
otic evolution of the classical Liouville equation with its—
from a quantum perspective—small-scale pathologies.

Before proceeding further, we mention an analogous situ-
ation in studies of chaotic advection-diffusion in fluid dy-
namics. The evolution equation for the concentration density,
c�x , t�, of a set of particles diffusing in a fluid without sinks
or sources is given by

�c

�t
+ �c · v = ��2c , �30�

where v�x , t� is the velocity field of the tracer particles. This
matches the classical Fokker-Planck equation studied here, if
one sets

v = � p

m
,−

�V

�q
 �31�

and the gradient is taken with respect to q and p. Diffusion,
in our case, is only with respect to p. The phase space dis-
tribution function is then regarded as the concentration of
particles in phase space in a given region, which is certainly
an appropriate interpretation. A numerical analysis per-
formed in Ref. �21� showed results similar to our predictions
where, for a certain vale of �, equivalent to D in our case, the
evolution converged to a stationary pattern at a finite time,
with only residual diffusion afterwards. The final pattern was
termed an inertial manifold and related to the unstable mani-
fold. Following this, the existence of such a manifold beyond
a critical � value was demonstrated analytically �37�.

This suggests that the qualitative classical analysis pro-
vided here might be made more rigorous. The analysis of
Ref. �37� relied significantly on applying periodic boundary
conditions to the concentration evolution and exploiting the
resulting gaps in the spectrum of the Laplacian. The open
boundary conditions relevant to this paper, however, appear
to preclude such an approach. Nevertheless, qualitative simi-
larities do exist and the two fields may well inform each
other in the future. �Of course, this is a purely classical
analysis and does not bear directly on the quantum evolution,
except implicitly since semiclassical evolution tracks the
classical manifold structure.�

V. SEMICLASSICAL ANALYSIS FOR AN OPEN CHAOTIC
SYSTEM

We now turn to the semiclassical analysis of the open
system master equation �19� in order to estimate the condi-
tions under which a weak QCT might exist. We begin by
rewriting the semiclassical Wigner function in the weak
noise limit utilized in the previous section. In this limit, the
classical action is modified to S�q , t��S�qC , t�
−�2D�0

t dt��t�qC�t�, as in Ref. �38�. The first term will evolve
classically, as discussed in Sec. III, as will the position coor-
dinate which appears in the second term. If we insert the
above semiclassical action into the expression for the Wigner
function we get the following result:

fW�q,p,t� =� dX
e−ipX/�

2��
	
i,j

N

Aijexp�−
i

�
X�2D�

0

t

dt���t��
� exp� i

�
�SCi�qC+,t,P� − SCj�qC−,t,P��

−
i�

2
�	i − 	 j� , �32�

noting that, since the amplitude is a second derivative and
the noisy perturbation is linear, noise only effects the action
to lowest order.

If we next average over all noisy realizations, the follow-
ing suggestive expression for the noise averaged semiclassi-
cal Wigner function is obtained:

GREENBAUM et al. PHYSICAL REVIEW E 76, 046215 �2007�

046215-8



� dX
e−ipX/�

2��
exp�−

Dt

�2 X2	
i,j

N

Aij

�exp� i

�
�SCi�qC+,t,P� − SCj�qC−,t,P�� −

i�

2
�	i − 	 j� .

�33�

The only alteration to the expression for the semiclassical
wave function to lowest order in the noise strength is the
appearance of a new Gaussian term. The presence of noise
acts as a dynamical low-pass Gaussian filter of semiclassical
phases, attenuating large X contributions. For any solutions
to the above equation, phases will be suppressed which have
wavelengths greater than

X � �/�Dt . �34�

These are the long, nonlocal “de Broglie” wavelength con-
tributions to the semiclassical integral, the very sort of con-
tributions previously identified as being particularly prob-
lematic in terms of obtaining a weak QCT. The filter prevents
the integral from becoming overwhelmed by long range con-
tributions as stretching and folding occurs which can lead to
disagreement with classical results, as well as the eventual
failure of the approximation.

We now combine the above with the classical result from
the last section. It is seen that the diffusion causes two ef-
fects: suppression of nonlocal phases in the semiclassical in-
tegral beyond a certain scale given by Eq. �34� and a smooth-
ing of the dual classical phase space over fine structures
smaller than a scale given by Eq. �28�. Each of these effects
overcomes the two semiclassically identified difficulties as-
sociated with a weak QCT for chaotic systems: The Wigner
function is no longer dominated by nonlocal contributions
and also does not need to track, nor does it receive interfer-
ence from, very fine scale structures. From these two scales
we should, therefore, be able to set a �semiclassical� criteria
for the existence of a weak QCT for a bounded one-
dimensional chaotic system. Physically, the local semiclassi-
cal approximation is valid when the primary contributions to
the semiclassical integral at a given point �q , p� come from
the local branch of the trajectory on which the point is lo-
cated. This will occur only when the scale at which local
classical smoothing occurs matches or exceeds the filtering
scale for semiclassical phases. When this occurs the nearest
possible branch which is capable of delivering nonlocal in-
terference effects will have those effects filtered within the
semiclassical integral. As a result one can recover the usual
short wave semiclassical picture of a trajectory “decorated”
only by local interference fringes.

More specifically, if we rescale the filtering condition �34�
in phase space units

lq �
�m̄�

�Dt
, �35�

then the semiclassical criterion for the weak QCT is given by
lq�t�� lcl�t�. The quantum scale lq decreases with time, as the
noise filtering, beginning with “fast” phase space oscillations

�interference due to far-separated features in phase space�,
reaches down to ever “slower” interference scales �due to
small-scale phase space features�. If small-scale classical
structures continued to be generated in phase space at a rate
outstripping the decrease of lq with time, the QCT would not
occur. Due to the presence of noise, however, classical small-
scale structure does not grow exponentially, but is eventually
cut off by lcl, which grows with time. Therefore, lq and lcl
must cross each other, and this point defines the weak QCT
time scale, tqc. For t� tqc, the classical structures are large
enough that the noise filtering is effective in smoothing over
the associated interference terms.

The weak QCT time scale follows from equating Eqs.
�26� and �35� for lcl and lq, respectively,

tqc � m�̄/D . �36�

Using Eq. �26� once again, one finds that this condition is
nothing but lcl

2 �tqc�= lq
2�tqc���, which would have been sug-

gested by basic intuition. Following from the discussion
above, tqc can also be interpreted as the time scale beyond
which a semiclassical approximation becomes stable for an
open quantum system. After this time, classical dynamics
should approximate quantum dynamics sufficiently.

Note that the two time scales discussed so far, t* and tqc,
scale very differently with the diffusion coefficient, D.
Whereas, t*� ln�1/D�, tqc�1/D, implying that the time
scales are far-separated in the small D �weak noise� limit,
where typically, tqc� t*. It is possible, however, to have tqc
� t* even at modest values of D. The physical interpretation
of these two possible situations is as follows. As discussed
previously, the time scale t* sets the “freeze-out” of classical
phase space structures, but it is possible to have a weak QCT
occur on either side of the freeze-out. When tqc� t*, even
though the large-scale classical phase space template is rela-
tively fixed, small-scale discrepancies will exist between the
quantum and classical distributions at least until t� tqc.
Though, in this case, the classical filtering will have termi-
nated the development of classical structures at t*, some time
must still elapse before interference between branches has
been sufficiently filtered. On the other hand, when tqc� t*,
the weak QCT can occur while the large-scale classical phase
space structures are still evolving since the classical freeze-
out has not yet taken place.

VI. NUMERICAL SIMULATIONS

The analysis in the preceding sections has helped to es-
tablish a set of criteria which, once met, allow the existence
of a weak QCT for classically chaotic systems. Given their
somewhat heuristic nature, it is important to examine these
predictions numerically. In the quantum evolution, once the
inequalities are satisfied, noise will filter nonlocal quantum
interference between the surviving large scale phase space
structures, so large scale coherences should not be present. If
not, one will essentially see a global phase space diffraction
pattern, with large-scale coherences persisting between all
parts of the bounded phase space region, an example of
which is shown in Fig. 1.
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The most direct numerical test is a close examination of
the time evolution of both the classical and quantum distri-
bution functions for the quantum and dual classical evolu-
tions. In this manner one can examine whether, over the
expected time scales as predicted in the previous section, the
expected phase space features are present for the template
classical distributions and quantum Wigner functions.

A direct examination is necessary as other, seemingly
logical measures, can sometimes be misleading. For in-
stance, looking at expectation values is not always helpful.
Typically, one would sample a set of lower order moments,
and follow their expectation values for a desired amount of
time. However, any classically chaotic system will have,
over time, an infinite set of nonvanishing moments, as will
any non-Gaussian quantum system �39�. That said, one might
attempt to argue that the effect of these higher-order mo-
ments may well be negligible. Even if this were the case,
however, numerical simulations of chaotic systems have
failed to find well-defined break times at which even lower-
order moments permanently separate, and expectation values
can agree well for surprisingly long time scales and even
without the presence of environmental noise �6�. Other mea-
sures, such as suppression of the integrated negativity of the
Wigner function, also are not necessarily signatures of
quantum-classical correspondence, as shown in Ref. �4�.
Once the amount of negativity is eliminated via environmen-
tal decoherence, it was shown by these authors that the quan-
tum evolution of a system may still disagree with its classical
counterpart.

A. Numerical methods

Numerical solutions of the quantum master equation �19�
for the Wigner function and of the corresponding dual clas-
sical Fokker-Planck equation were carried out using a split
operator spectral method implemented on parallel supercom-

puters �40�. The spectral method is particularly well-suited to
high spatial resolution simulations where spatial structure is
cut off above some given wave number—this is the case here
for both the quantum and dual classical evolutions.

The time-stepping strategy is the same as that in analo-
gous classical symplectic integrators. Suppose the time evo-
lution of a function, f�t�, satisfies the operator equation:

� f

�t
= �L̂A + L̂B�f , �37�

where the separate evolutions given by L̂A and L̂B can be
implemented exactly. The exact solution to this equation is
given by

f�t� = e�L̂A+L̂B�t f�0� . �38�

Since L̂A and L̂B do not commute in general, the fact that the
individual evolutions are known exactly is not of direct use.
An integration scheme for a small time step �t can be con-
structed simply, however, using the Campbell-Baker-
Hausdorff theorem:

f��t� � e���t/2�L̂A�e��tL̂B�e���t/2�L̂A�f�0� + O��t3� . �39�

With the assumption that the exponentiated operators can be
applied exactly, this method is accurate to second order in
�t. The third order correction term is

1

24
��t�3

†L̂A + 2L̂B,�L̂A,L̂B�‡f�0� , �40�

which can be evaluated to estimate the accuracy of the ap-
proximation.

In the present case, the evolution operator is L̂cl+ L̂q
+D�p

2 for the Wigner evolution and is the same, but with

L̂q=0 for the dual classical evolution. We split this into three
operators, the “stream” operator −�p /m��q, the “kick” opera-
tor proportional to potential derivatives, which differs for the
classical and quantum cases, and the momentum diffusion
operator. As each piece involves either derivatives of posi-
tion or momentum, but not both, the individual operators can
be easily evaluated using a fast Fourier transform. The split-
operator method preserves the unitarity of evolutions when
D=0 and given a sufficient number of grid points in the
spatial and momentum directions—satisfying associated Ny-
quist conditions—the operators can be evaluated at each time
step with essentially no spatial discretization error.

The typical mesh used over phase space consisted of 4096
by 4096 grid points. This size was determined by our need to
resolve the bounded classical phase space portrait for the
amount of time necessary to show long range agreement be-
tween the classical and quantum evolutions. If D=0, the
classical phase space will be chaotic, and the system can
only be explored for short times, before which structures
begin to proliferate on scales smaller than the area defined by
the grid spacing. The addition of an environmental interac-
tion, as demonstrated in the theoretical section, prevents
structures from forming on infinitely small scales. This
makes it possible for the classical evolution to converge as
resolution improves. The aforementioned grid size is the one

FIG. 1. Phase space rendering of the Wigner function for the
Duffing system at time t=314 periods of driving. The nonlocal in-
terference is significant and cannot be associated with specific clas-
sical structures. This plot is taken at a relatively small D value
�10−4� for resolution purposes. The value of � is set equal to 1 in
order to clearly demonstrate this effect.
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for which convergence was achieved for the systems we
studied, and was derived empirically. Convergence for the
quantum evolution is determined by the smallest scales—
�x=� / P in space and �p=� /L in momentum—present in the
Wigner function �L and P are the scales of the system bound-
aries in length and momentum, respectively�. Thus, a typical
mesh spacing can be fixed without regard to the strength of
the environmental interaction. For our investigations, this re-
quired less resolution than in the classical phase space and,
therefore, the dual classical evolution dictated the grid size
for the numerical simulations.

B. Duffing oscillator

The particular potential chosen for study was the chaotic
Duffing oscillator with unit mass: H�q , p , t�= p2 /2+Bx4

−Ax2+�x cos��t�. The evolution was evaluated for the set
of parameters A=�=10, B=0.5, and �=6.07. In this param-
eter regime, the system is strongly chaotic, with an average

Lyapunov exponent of ̄=0.57 that is relatively uniform over
the hyperbolic phase space region �41�. The size of the
bounded phase space region, which is A in our calculations,
is approximately 270 units of action. The hyperbolic region
of the system’s bounded motion is generated by the ho-
moclinic tangle of a single hyperbolic fixed point and the
stable regions are relatively small. Consequently, the un-
stable manifold associated with the hyperbolic point com-
pletely characterizes the chaotic region and provides an ideal
test for the theory developed in this paper for bounded hy-
perbolic regions.

These parameters were chosen, not only because they pro-
vide appropriate testing conditions for theory, but also be-
cause their classical dynamics have been well studied in Ref.
�41� and elsewhere. As a result, one can estimate the values
of the quantities of interest, e.g., tqc, with the system param-

eters, such as ̄, fixed at some canonical values. In addition,
one also must be careful to choose a value of � which is not
so large that the initial conditions are well outside the
bounded region. Of course, choosing a value of � of the
same order of magnitude as the bounded region or greater,
would also invalidate the argument. One also does not want
to choose D values which are very large compared to those at
which the transition is predicted to occur, as extreme D val-
ues, while inducing quantum-classical correspondence, may
wash out any intrinsic system dynamics.

We will principally focus on the case where �=0.1 for a
variety of practical reasons. The value of �=0.1 turns out to
be convenient for these purposes: The critical D value pre-
dicted is small, but not too small that it is below computa-
tional resolution, and it also allows a wide range of D values
to be studied without smearing out the system dynamics.
This value of � was used in Ref. �15� which motivated much
of this research, and which confirms that a weak transition
will occur for this value. Still, the additional set of � values,
�0.01,0.5,1 ,�2,3 ,5 ,10,20�, were studied, and all revealed
similar results, though some, such as �=0.01 and �=5, had
compromised dynamical ranges, while �=10 and 20, were
too large to be of practical interest. The results presented in
depth in this section for �=0.1 should, therefore, be thought

of as emblematic of all cases studied. For a given trial, � and
D were held fixed.

We use the same normalized initial conditions for both
dual classical and quantum evolutions, as we are trying to
see the degree to which the two evolutions follow each other.
In the numerical simulations, the typical condition was a
superposition of two Gaussians, since a classically unaccept-
able initial condition would better illustrate the suppression
of interference effects. Other conditions were also tried and
compared, with analogous results.

The choice of D=0.001 yields the estimates t*=15.02 and
tqc=57. For this case, the development of large scale classi-
cal structures should terminate before quantum and classical
agreement occurs. A larger value for the diffusion coefficient,
D=0.01, gives t*=13.1 and tqc=5.7. Here the transition oc-
curs just before the termination of classical structure. Be-
cause of the quantum nature of the initial condition, in the
estimation of t*, we have set u0

2=�.
We now set out to test these predictions via numerical

simulations. We first compare the classical and quantum evo-
lutions at late times in order to establish whether or not a
quantum-classical transition in fact occurs as predicted.
Comparison of expectation values was helpful to establish
whether the transition had occurred, but final approval was
given only after examining the distribution functions and
Wigner functions directly. Such a comparison is presented in
Fig. 2. We compare cross-sectional slices of the classical
distribution function and quantum Wigner function after 149
drive periods of the Duffing oscillator. These slices are taken
along the p=0 line. For D=10−5 very little agreement occurs
between the classical and quantum slices �as expected, since
in this case tqc�5700�. In fact, the quantum slice still has
many negative regions. For D=10−3, in agreement with our

FIG. 2. Sectional cuts of Wigner functions �dashed lines� and
classical distributions �solid lines� for a driven Duffing oscillator,
after 149 drive periods, taken at p=0 for �a� D=10−5, �b� D=10−3,
and �c� D=10−2. Parameter values are as stated in the text; the
height is specified in scaled units.
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order of magnitude estimate for when a transition should
occur, progress has clearly been made. The two functions are
in average agreement with one another, and, although there is
less agreement on details, there is agreement between the
two on some of the larger phase space features. At a larger
value, D=10−2, this agreement is much improved and over-
all, the distributions are much smoother.

Note that the weak QCT occurs in time when lq= lcl

���, this phase space scale being independent of the value
of D. However, the form of the large-scale classical template
is determined by the structures present at t*, which is sensi-
tive to the value of D. Additionally, larger values of D will
lead to stronger filtering in both the quantum and classical
cases. At a fixed value of time and �, this means that slices of
the Wigner function at higher D values will have broader
features and more efficient filtering of small scales. This as-
pect is clearly demonstrated in the three panels of Fig. 2.

We now examine the time dependence in more detail. In
Fig. 3, we display cross-sectional slices taken at t=10 and
t=30. At t=10, the slice in the top panel, the classical and
quantum functions have still clearly not explored phase
space sufficiently. The Wigner function has significant nega-
tive values and the classical distribution function has not
been heavily broken up by the dynamics. By t=30 �still less
than tqc�, lower panel, the picture begins to resemble the
late-time plot shown in Fig. 2. The negative regions of the
Wigner function have been largely eliminated and the func-
tions are distributed throughout phase space and are in ap-

proximate agreement. This result is also consistent with the
estimated value of tqc.

We now perform a similar analysis for D=10−2, for which
tqc is an order of magnitude shorter. The top panel of Fig. 4 is
a snapshot at t=8, close to tqc, whereas the lower plot is
taken at the later time t=20. The early-time panel shows that
the two distributions closely agree on general features of the
dynamics, as predicted. By t=20, the weak QCT is well-
stabilized, and one sees the strong agreement on most indi-
vidual features present in the late-time case shown in Fig. 2.
As indicated earlier, similar results were seen at other values
of �, at the same level of detail shown here for �=0.1. Many
of the studies of the late-time dynamics of this system appear
in Ref. �23�. As a further example, we show plots in Fig. 5
for the case of �=1 and with stronger noise coupling than the
typical case considered in the theoretical analysis. In the up-
per panel D=0.1, while the lower plot has D=1; the snap-
shots are taken at t=20. �In both cases, tqc� t*.� The top slice
shows general agreement between the two distributions, with
some residual quantum interference effects. When D=1, the
formal value of tqc is less than the dynamical time scale. This
indicates that the onset of the weak QCT should be very
rapid and by the relatively late time at which the snapshot is
taken, the transition should be complete. The numerical re-
sults are very consistent with this prediction. These two plots
show that even in the regime where our formal analysis
might break down �large �, large D�, the general features and
time scales follow the predicted estimates. At even larger
�unphysical� values of � and D, the phase space boundaries

FIG. 3. �Color online� Cross-sectional slices of the Wigner func-
tion �solid� and classical distribution function �dashed� taken in
phase space for p=0 and D=10−3. The upper plot is taken at t
=10 and the lower plot is taken at t=30.

FIG. 4. �Color online� Cross-sectional slices of the Wigner func-
tion �solid� and classical distribution function �dashed� taken in
phase space for p=0 and D=10−2. The upper plot is taken at t=8
and the lower plot is taken at t=20.
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become important and the smoothing gets so large that dy-
namical features hardly survive in the distributions.

Finally, we address one last point of the argument—that
the noise-averaged termination of fine scale structure would
lead to the presence of the early time folding associated with
the foliation of the unstable manifold generated by the ho-
moclinic point of the Duffing system. Evidence for this is
presented in Fig. 6, a full late-time, high-resolution phase
space rendering of the Wigner function for D=10−3. The
time is taken to be t=149 �roughly a factor of 2 greater than
tqc�, well after the quantum-classical transition has occurred.
Superimposed on the Wigner function is the early time un-
stable manifold. It is clear that the evolution has organized
along these early-time features, as expected from our analy-
sis. The final distribution which both the dual classical dis-
tribution and Wigner function approach, once the transition
has occurred, shows the suppression of the late-time, fine-
scale features of the unstable manifold, as it is supported by
the large early-time structures. Quantum interference, while
expected, is local and is strongest near the sharp turns in the
manifold where branches are most close together. This, com-
bined with the previous results in this section, allow us to
conclude that the basic mechanisms posited for the quantum-
classical transition are consistent with results from numerical
simulations.

VII. CONCLUSION AND FUTURE DIRECTIONS

We have presented a set of physical mechanisms which
explain the source of the weak quantum-classical transition

for one-dimensional, bounded chaotic systems. The fact that
one-dimensional, chaotic systems are being investigated in
real world laboratory experiments, with interesting potential
applications, further enhances the importance of understand-
ing how unconditioned environmental interactions affect a
subsystem of interest. We have used this understanding to
derive estimates for the time at which the weak transition
occurs.

It is important to keep in mind that currently there is no
general understanding of which systems will actually exhibit
a weak QCT, so the existence of this time scale has another
useful feature, in terms of classification of quantum dynami-
cal systems. If a weak QCT has not occurred by the predicted
tqc, our analysis would argue that it will not occur at all
�within the parametric assumptions made�. So the existence
or nonexistence of this time can be used as a test for the
occurrence of long-time quantum-classical correspondence
�but still on time scales shorter than the physical equilibra-
tion time scale� without any knowledge of initial conditions.

Our numerical results illustrated the compact manifold
structure induced by the bounded phase space region. The
role of boundedness is a key component in the theoretical
analysis presented earlier in this paper. This topological fea-
ture causes the system to fold on itself, which, in turn, al-
lowed us to estimate a time scale for the termination of fine
structure. A one-dimensional bounded chaotic evolution,
coupled with noise, appears to necessarily terminate fine
scale structure. In order for the analysis to be valid, the sys-
tem must be bounded or, if it is unbounded, it must at least
fold onto itself in such a way as to allow a similar process to
take place. The lack of such an evolution may be a reason
why no such transition was found for the manifestly un-
bounded delta-kicked rotor studied in Ref. �18�. Additionally,
while an unconditioned evolution eliminated all negativity
from the quantum Wigner function, the distribution was still
not classical �4�.

FIG. 5. �Color online� Cross-sectional slices of the Wigner func-
tion �solid� and classical distribution function �dashed� following
Fig. 4. The upper panel has D=0.1 and the lower panel has D=1.
Both snapshots are taken at t=20.

FIG. 6. �Color online� Phase space rendering of the Wigner
function at time t=149 periods of driving. The early-time part of the
unstable manifold associated with the noise-free dynamics is shown
in white �yellow online� �see text for discussion�. The value of D
=10−3 is not sufficient to wipe out all the quantum interference
which, as expected, is most prominent near sharp turns in the
manifold.
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It is useful to restate the ways in which the present analy-
sis differs from previous work. First, the connection to con-
tinuous measurement and the weak and strong forms of
quantum-classical correspondence are explicitly stated. Sec-
ond, we use the dual classical Fokker-Planck equation not to
represent a physical classical evolution, but rather as a dy-
namical foil of the open-system quantum evolution, one that
can handle quantum initial states, and quantum back action
�which is missing in classical theory�, but keeps only the
classical system propagator. Third, our analysis is
symmetric—we consider the effect of noise acting as a filter
on the open-system quantum evolution �treated in semiclas-
sical approximation� melded with a consideration of noise-
induced filtering on the classical dual evolution with its
exponential-in-time folding of phase space structures charac-
teristic of chaos. This folding points to the role of global
phase-space topology in deriving our results, and distin-
guishes them from local, heuristic analyses of the role of
decoherence in the quantum to classical transition �42�.

Clearly, more work is needed to fully explore the condi-
tions under which the weak QCT exists, especially the role
of boundedness. In this regard, investigation of two-
dimensional systems would be informative as several of the

topological arguments presented here would likely need to be
modified. Adding more dimensions would introduce effects
such as Arnold diffusion which become important compo-
nents of the dynamics. Many of these features lack a lower
dimensional analog, so it is reasonable to believe that they
could play an important role in the higher dimensional QCT.
It would also be interesting to see what qualitative features
of the weak quantum to classical transition will be preserved
in these systems. More immediately, the connection between
the requirements for weak and strong QCT scenarios are
worth contrasting, especially to delineate parameter regimes
for validity. This project is currently underway �43�.
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